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1 Introduction

We have undertaken research on model-based change detection and site model
updating. Change detection is perhaps the most important task in the process of pho-
to-interpretation and an ideal one to demonstrate the effectiveness of the site model-
ing exploitation (SME) approach that has been adopted for the (Research And
Development for Image Understanding Systems (RADIUS) program. Change detec-
tion is a tedious task as it requires careful comparison of images (and their models)
taken at different times under possibly vastly varying conditions. We believe that
even partial automation of this task will greatly increase an analyst’s productivity
and possibly also enhance the reliability of the results. Furthermore, change detec-
tion offers a challenging (Image Understanding) IU research opportunity for which
some of the foundation has been laid.

The task of change detection consists of comparing a new image of a site (or a
collection of images) to the information contained in the folder for that site. The infor-
mation in the site folder may consist of one or more previous images and results of
previous analyses on these images. We assume that in all cases, a site model of suit-
able resolution and complexity is included in the site folder (though we may still need
to examine the older images and other data directly). Also, collateral information
about the site may be available.

The task of change detection consists of finding significant differences between
the new data and the model derived from the older data. The significance of the dif-
ferences may be task specific, though in most cases, man-made changes are more im-
portant than changes caused by natural factors, such as seasonal changes. The
differences need to be described not so much in terms of the changes in the image, but
in changes in the site. Functional inferences need to be drawn from the detected

changes as well.

Complete automation of the highly complex change detection task would require
the implementation of virtually all of the other tasks of RADIUS, including that of
site modeling. Clearly we can not solve all these problems in this effort of modest size
and will need to select problems carefully. The following describes the rationale for se-
lecting some problems and proposed approaches for solving them. Section 2 discusses
progress on model registration and validation, the first stage towards the develop-
ment of a change detection system. Section 3 discusses the status of automatic model
construction techniques applied to building structures. It should be recognized that,
to a certain extent, the choice of problems will be influenced by continuing tests with
image analysts in the RADIUS program and availability of suitable data.
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1.1 Phases in Change Detection

It is useful to break the change detection task into the following sub-tasks that
have close IU analogs.

* Detection: In this phase, we determine whether a significant change has taken
place since the last look at the site.

* Description: In this phase, a description of the change is obtained. The descrip-
tion may consist of the size and shape of the new (or altered) structure and sur-
face properties. This step is similar to the process of constructing a site model,
and, in fact, one result of this step may be an updated site model.

¢ Functional Inference: In this phase, an attempt is made to judge the purpose of
the change and the role that the new structure may play in the function of the
overall site. This step is like the reasoning processes in Artificial Intelligence
(AI), but needs to handle geometrical objects and relations.

1.2 Types of Changes
The kinds of changes that may be of interest can be characterized as follows:

* Changes to Existing objects: Significant changes are made to existing struc-
tures, for example, a new wing is added to an existing building, a road is wid-
ened, or a runway [8] is lengthened.

* New Objects: Here new objects appear at the site, such as a new building, new
bridge or a new power line.

* Preparation for Construction: Here the new structure may not be apparent but
preparations for construction are visible. Examples are earth movement for
foundation, presence of construction equipment and/or materials, or clearing of
forested areas.

* Changes of detail: Here small but significant details have changed in existing
structures. An example is a new antenna on the roof of an existing building.

* Redeployment: Here mobile objects, such as vehicles and aircraft are moved
around and redeployed.

1.3 Process of Change Detection

The task of change detection can be broken into two sub-tasks: Detection of
changes and Description of changes. In the detection phase we determine whether a
significant change has taken place since the last look at the site. In the description
phase, a description of the change is obtained. The description may consist of the size
and shape of the new (or altered) structure and surface properties. This step is similar
to the process of constructing a site model, and, in fact, one result of this step may be
an updated site model.

Figure 1.1 shows a flowchart of the complete change detection system. The pro-
cess requires a comparison of new imagery with the old (and the models constructed
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from the old imagery). However, a distinction needs to be made between changes in

the images and changes in the site. We are only interested in those changes in the im-

age that come from some changes in the site rather than from changes in imaging con-

ditions. The techniques of simple image differencing are inadequate for this task.
3-D Model

New
Image
H

Model fo /mbge;
Registration |

Model
Validationi

Ia

Preliminary
e Detection'p

Site Modelingi
Processes |

Figure 1.1 Flowchart of change detection system.

We follow a four step approach:

; * Registration of Site Model to Image: The first step in change detection is to reg-
j ister the new image(s) to the model(s) contained in the site folder. We have as-
sumed that this ability will be available from other ongoing RADIUS projects.

e Model Validation: After a coarse registration between the image and model has
been made, we verify the presence in the image of the model objects. We pro-
posed to use feature matching techniques for this step [1]. Model features that
are not present in the image represent likely changes. Some missing features
will be due simply to viewing conditions. These, however, can be predicted and
explained from the site model itself. The task of finding objects in the image that
are not in the model, is more difficult since the model is no longer as useful in
directing the processing. We propose to do this by the next two steps.

o Focus of Attention: This will be a collection of techniques that will draw atten-
tion to significant structures in the image that are not explained by the existing
model. To separate the significant changes from the insignificant ones, a percep-
tual grouping operation that organizes lower level features into higher level
structures will be necessary [11,18]. Matching features between multiple images
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(if available) will help distinguish between structures on the ground and above
the ground. In monocular images, an important cue to significant changes will
be the presence of shadows [1,9,14]. Collateral information may also be useful in
determining the focus of attention.

* Detailed Analysis: In this step, we analyze in detail the structures indicated by
the focus of attention processes. This step requires the development of automat-
ed or semi-automated site modeling techniques.

1.4 Classes of Objects
The following generic classes of objects are likely to be of interest:

* Elongated Objects: Objects such as roads, runways [8], rivers, railroads, pow-
erlines, etc. Such features are typically characterized by large curvilinear fea-
tures, though some, powerlines for example, may also require the ability to
detect 3-D structures, such as the towers that support the powerlines as the
lines themselves are not likely to be visible.

* 2-D Objects: These correspond to large surface features such as water bodies,
forest clearings and urban areas. Such objects are typically characterized by
having uniform region properties such as intensity and texture.

* 3-D Objects: The world is full of important 3-D objects, e.g. buildings, factories,
bridges, powerline towers, etc. Such objects are perhaps the most important,
however hardest to detect and describe automatically. Important clues to the
presence of 3-D structures in monocular images are in the shadows and specific
2-D shapes for the contours of the objects. The latter clue is more easily applied
if a specific model is available though generic models and can be used.

* Mobile Objects: Mobile objects are a special instance of 3-D objects. A complete
3-D model of such objects may not exist in the site model, hence transforming
them to the new viewpoint, and comparing them with features in the image may
not be possible. Also, these objects are rather small compared to structures such
as buildings, therefore of limited resolution.

During the past year the first three steps of the process of change detection were
worked on and applied to building structures. A technique was developed to precisely
register the site model to a new image, and to verify the presence of model structures
in the image (model validation). Pertinent details are given in Section 2. Separately,
progress was made on automatic model construction without the use of the site model.
This is required to detect building structures in the image that are not part of the
model. Future work will bring these processes together in order to detect new struc-
tures and augment the site model accordingly.

This research has been directed, in part, by the imagery available for analysis,
and by the importance of the problems as determined by experiments in Phase I of
the RADIUS project.
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2 Model Validation for Change
Detection

The task of model validation in the context of change detection involves compar-
ing a new image of a site (or a collection of images), to the information associated with
that site. This information may consist of a site model and one or more previous im-
ages, and the results of previous analyses on these images. We assume that in all cas-
es, a site model of suitable resolution and complexity is available.

In this Section we discuss progress on the problem of model validation, the pro-
cess of confirming the presence of model objects in images. This task requires that we
first register the new image to the site model, and then validate the model objects. We
have chosen to work with features extracted from model information and the new im-
age, rather than developing pixel based techniques.

Previous work on change detection relies on image differencing that is unable to
separate the effects of changes resulting from different viewing conditions (such as
different viewing positions, different illumination and seasonal changes) from impor-
tant structural changes.

One example of previous work is by Lillestrand and Ulstad [13,20]. Given a ref-
erence image and a new image, the reference image is first corrected for any spatial
distortion so that it is registered with the reference. This is done at each point by find-
ing the best conjugate point on a simple correlation-based criterion. Global intensity
corrections are made so that the first two moments of the image match, allowing for
any differences in luminosity or film sensitivity. Next, a simple subtraction of the two
images is made to reveal small scale changes between the two views. This algorithm
works very well for this particular problem of detecting changes between two images.

Another approach is to use general classification algorithms after spatial regis-
tration to assign each pixel to a limited number of classes, thus transforming the in-
tensity range of a pixel into a reduced number of levels. This assumes that preferably
more than one band of image data is available, as in Landsat’s multiple band images,
for example. Depending on a pixel’s position in the n-dimensional data space, and re-
lying on the statistical description of each class (which is user-defined), a pixel is as-
signed a class. The classes could represent water, forest, roads, urban areas, and so
on. Once the classification is done for each image, the detection of changes becomes

straightforward.

Next, we give details of our model validation technique. Also discussed are ex-
perimental results applied to building structures using a site model and associated
imagery supplied by the RADIUS program.
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2.1 Validation of Buildings

Given a 3-D site model (consisting of a set of objects such as buildings, houses,
and storage tanks, describing a site) and an image of this site, taken at a later time.
The site model consists of geometric information only: we do not have any data about
albedo or color for any of the objects. Model validation refers to the task of confirming
the presence of model objects in the image. Specifically, we apply our technique to val-
idating the buildings in the model. Extension to most objects of similar structure and
geometry is straightforward.

Model validation requires three steps:

* Coarse registration of the model and the image. This is equivalent to finding
the correct position and orientation of the camera at the time the image was tak-
en.

* Matching model to image. Once the viewpoint is known, we project model fea-
tures onto image coordinates, and use them for matching to equivalent features
extracted from the image. We use the edges, or segments, of the wire-frame rep-
resentation of the model to match against line segments extracted from the im-
age. Matching features allow us to form hypotheses that represent the presence
—or the absence— of a model feature in the image.

* Validation of hypotheses. We attempt to verify the hypotheses made with the
help of the shadow information extracted from the image.

The following sections describe in more detail each of the three steps of our mod-
el validation algorithm.

2.2 Registration

The orientation and position (the external parameters) of the camera are usually
known approximately for a given image. Otherwise, if the intrinsic parameters of the
camera are known, —focal length and position of the principal point (the perpendicu-
lar projection of the focal point onto the image plane)— then it is possible to derive this
information. This problem is known as relative orientation for the case of image-to-
image registration, and exterior orientation for the image-to-model registration case.

2.2.1 Relative Orientation Between two Images

Most algorithms proposed for this problem in the literature are based on the use
of a set of conjugate points (the matched control points) given by the user. In theory,
given three parameters for rotation, three for translation, and allowing for an overall
scale factor (which cannot be determined from two projected images), there are five
constraints. The knowledge of a pair of conjugate points gives three equations (denot-
ing the transformation of the three coordinates), but brings up two additional un-
knowns (the depth in both coordinate systems). Therefore, only five points are needed
to compute the transformation (see [6]). In this case, however, the equations to be
solved are non-linear.
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These methods are usually computationally expensive, and in general, a unique
solution is not possible when the minimal number of points are given. An example of
a powerful non-linear solution can be found in [7].

It is possible, however, to solve the problem using only linear equations, if more
information is given. The linear algorithms (Longuet-Higgins [16], reexamined later
by Hartley [5] and Faugeras [4]), need at least 8 point correspondences. The main ad-
vantage of linear methods is that they are fast and guarantee the uniqueness of the
solution, except in degenerate cases. These methods, however, exhibit sensitive be-

havior in the presence of real, noisy data.
2.2.2 Exterior Orientation Between an Image and a 3-D Model

The exterior orientation problem, which is the one we need to solve, is a special
case of the relative orientation problem, thus, the algorithms mentioned above are ap-
plicable with only slight modifications. Instead of giving two sets of 2-D coordinates
to describe the conjugate points, we will give, for a ‘conjugate point’, its 3-D coordi-
nates in the site model, and its 2-D coordinates in the image.

Here we have more information than in the relative orientation problem. There
are three rotation parameters and three translation parameters (in this case the over-
all scale factor can be determined). Each point brings up three equations as before,
but only one additional unknown emerges. Therefore, in theory, it is sufficient to have
only 3 points to solve the registration problem. However, the equations in this case,
being non-linear, will result in more than one solution (up to eight); a fourth point is
needed to completely solve the problem (see Horn, [6]). Using a larger number of
points is desirable to improve accuracy of the solution with a least-squares method.
We have found in our experiments that 20 reference points are adequate.

We have used two algorithms, both giving good results. First, we used the linear
method of Hartley (see [5]) that we adapted to the exterior orientation problem. The
non-linear algorithm we have used is the USGS resection algorithm provided as part
of the RADIUS Common Development Environment (RCDE), the environment used
for ARPA sponsored RADIUS research work, including our own Aerial Image Analy-
sis research at USC. Both methods give a good coarse approximation of the orienta-
tion, with a preference for the non-linear method which gave results within a few
pixels (see figure 2.7 on page 13 for an example of registration on image k4, using the
USGS resection algorithm.)

2.3 Matching

In order to obtain an accurate registration between the model and the image, we
first match features computed from the information in the site model with features
extracted from the image. Secondly, each matching pair (model feature, image fea-
ture) denotes a hypothesis that the object the model feature is part of, has a corre-
sponding object in the image. For this purpose we use the algorithm described in [17].
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The algorithm assumes that there is only a translation between the two sets of fea-
tures to match. We now briefly describe the matching process.

2.3.1 Input

We have chosen to match two sets of line segments. The first set consists of line
segments extracted from the image using the LINEAR feature extraction system [19].
The second set is constructed from the 3-D wireframe model (edges of buildings and
roofs) projected on the image, and consists of the visible segments only. Here, “visible”
means segments of a model building that are not occluded by that same building (i.e.
only self-occlusion is considered). Also, we consider segments longer than a certain
length (10 pixels in our current system.)

2.3.2 The Matching Algorithm

We have a candidate pair of matching segments (one from the image set and one
from the model set) when the two segments overlap, that is, the segment end points
project inside the other segment. The segments also must lie within a certain “dis-
tance” of each other. The calculation of “distance” is as follows: If the two segments
intersect, then the distance is zero. Otherwise the distance is the smallest projected
distance of each segment end on the other segment, if it falls inside that segment. Fig-
ure 2.1 shows the distance between two segments p; py and pgp4. Each segment end
point is projected onto the other segment. The distance is the minimum of the projec-
tion distances, if the projected point is inside the segment. In this case p; and py
project outside the other segment, therefore: d(p;po,p3ps) = min(dg,dy).

Each pair of candidate segments produces a vote as a function of the distance be-
tween the two segments and the differences of segment orientation and length.

Figure 2.1 Distance between two segments p; po and psgpy.

Votes are computed for candidate pairs and add their contribution into an accu-
mulator array. The array axes denote translation. For noise effect reduction, the vote
is cast not only at the point corresponding to the translation between the two seg-
ments (the translation between the two segment centers), but in a rectangular region
around these points. For details see [17].

At the end of the voting process, a peak detector in the accumulator array gives
the position of the best translation between the two sets of segments. Knowing the po-
sition of the peak, a second pass of the algorithm is used to collect the matching pairs
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that contribute to the peak in the accumulator array. As a result of applying this two-
pass process, we know for each segment of the model whether a corresponding seg-
ment was found in the image.

The next step in the validation process involves complete model objects. For each
building object in the model, we have a record of the matching of its component edges.
A strong match is denoted when at least four of the possible nine visible segments in
its model have a corresponding match among the segments from the image. Other-
wise the match is denoted as a weak match.

Objects having a strong match are considered validated. Figure 2.2 shows an ex-
ample. The segments extracted from the image and the model are shown in figures
Figure 2.2a and Figure 2.2b respectively. Figure 2.2c shows the segments of the pro-
jected model that were matched. This building is considered a strong match. Model
buildings having weak matches, or no matches, require verification before they are
considered validated. The verification technique uses shadows, detected and pro-
cessed, using the techniques described in [14]. The next section gives details of the

method.

(a) (b) (©)
Figure 2.2 Example of segment matching on building 36.

2.4 Verification of Objects

Objects having weak matches or no matches require additional verification in an
attempt to confirm their presence in the image. Weak matches can be the result of sev-
eral conditions, such as inaccurate registration, poor contrast or occlusion by other ob-
jects. Verification can be achieved by means of 3-D clues from stereo or from evidence
of the shadows cast. Qur current work processes monocular images and thus, uses
shadow clues for verification.

We assume that the sun angles (direction of illumination and incidence angle)
are known a-priori. Otherwise they can be computed from the time of the day at which
the image was taken, and the latitude and longitude coordinates of the site. If the
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time is unknown, the direction of illumination could easily be at least approximated
by a trained operator from the image itself, after the registration has been completed.
We also assume that the image contains reasonable shadow information.

To verify model objects we use the sun angles to generate the shadows they are
supposed to cast. We then match these shadows to the shadow evidence found in the
image. More details are given below. For this we make one assumption concerning the
site itself. In the absence of a digital terrain elevation model (DTM), we consider the
ground plane to be locally planar, so that the projections of shadows to the ground are
simple to compute. Figure 2.3 shows the three shadow junctions and four boundaries
cast by a “cubic” object. In the future we plan to use available DTMs for improved ac-
curacy.

Shadow cast by

) vertical edges
Junction

Other
shadows

Figure 2.3 Typical shadows cast by an isolated “cubic” building.

Next we describe the verification process using shadows. It involves labeling im-
age boundaries as potential shadows, and to compare these against shadows generat-
ed from model information.

2.4.1 Shadow Detection

We label image edges or segments as potential shadow segments by noting the
consistency of the “dark” side of the segment with respect to the direction of illumina-
tion. Segments oriented parallel to the direction of illumination also correspond to
possible shadow lines cast by vertical object edges. Similarly, we detect shadow junc-
tions. The L-junctions formed (allowing for gaps) by potential shadow lines are la-
beled potential shadow junctions. For more details on the shadow labeling of
segments and junctions see [10] and [11].

2.4.2 Validation of Hypotheses

The 3-D position of the objects having weak or no matches is known from the
model. This information is used to predict their position in the image. Thus, the pro-
cess consists of calculating the shadows cast in 3-D space and predict their location in
the image. Then we search around the predicted locations for evidence of shadows
among the potential shadows extracted from the image. If we find a sufficient evi-
dence of shadows, then the presence of the building is confirmed.
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Some objects may not be sufficiently isolated and shadows may not be cast on
the ground. Also, shadows may be cast on other objects and sometimes will not be vis-
ible from the viewpoint. Figure 2.4 shows two examples of situations where building
verification is made difficult by the presence of surrounding buildings. The shadow 1-
3 cast by building C is not visible (occluded by building B), and the shadow 1-2 is pro-
jected on building A, not on the ground. We cannot take this into account until we
have verified building B or C. Figure 2.4 shows building E occluded by building D,
making verification difficult from this particular view point.

(a) (b)
Figure 2.4 Example of dificult building verification.

In our system we compare the evidence of shadows found with the visible shad-
ow evidence. Visible shadows are determined by the knowledge of which objects have
already been verified. In the “counting” (or accumulation) of shadow evidence, we also
give greater importance to shadows cast by vertical edges and to shadow junctions
that appear to correspond geometrically to shadow casting object structures. We con-
sider this very strong and reliable evidence.

Not all weak matches are verified in a single pass due to poor contrast, occlusion,
self-occlusion, lack of a DTM, and errors in the model itself. We, however, use the
knowledge of previously verified buildings. This knowledge also allows us to predict
more accurately the position of shadows on a subsequent pass. We repeat the process
until no further verification of weakly matched objects is possible.

Note that for model buildings that have no matched segments, we are still able
to predict their position in the image, by relation to the position of already confirmed
buildings. We proceed in the same manner to verify these. In this case, however, the
absence of shadows confirms the absence of the building. On the other hand, the pres-
ence of shadows does not guarantee the presence of a building. In this case attention
is focused at this location for further study, including the application of object detec-
tors, such as the one described in [11], to validate the presence of an object. Thisis a
topic of current study, as part of the work on change detection.

2.5 Experimental Results

The validation system has been tested with a 3-D site model and images denoted
as the Model Board 1 data set provided to us by the RADIUS program. The site model
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describes geometrically a scene containing several buildings and other objects con-
structed at the approximate scale of 1:500. The images are 1320x1035 pixels with a
ground sampling distance between 18.5 and 32.5 inches. Despite the ‘artificiality’ of
this model (due to the indoor setting, no-clouds lighting, the use of small models for
the buildings), there is sufficient added noise to consider the data set fairly realistic

and adequate.

Figure 2.5 Model Board image k10.

A typical image is shown in Figure 2.5. The features in these images consist of
buildings (of ‘cubic’ shape), houses (which are simple buildings with a gable) and stor-
age tanks and chimneys (cylindrical shapes). The model contains 60 cubes and hous-
es. Six cubes from the model were removed as they were considered too small or
inaccurate. The basic shapes are shown in Figure 2.6, and a view of the complete site
model is shown in Figure 2.7. We have used in our experiments the house and cube
shapes, but extension to other similar shapes is straightforward.

2.6 Matching Results

The matching process gives excellent estimates of misregistration. We use an ac-
cumulator array of size 50 x 50 allowing a 25-pixel misregistration offset in any direc-
tion. Initial coarse registration using the USGS resection technique was in the order
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Figure 2.6 Two shapes used in our experiments with model board 1.

Figure 2.7 The model used in our tests, and the model registered to image k4.
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of a few pixels. An example of accumulator array is shown in Figure 2:8. The peak is
very sharp and allowing unambiguous determination of the translation. The two ridg-
es in the horizontal and vertical dimension correspond to the dominant orientations
of the segments in the model (the buildings are nearly all constructed parallel to each
other.)

2.7 Summary of Verification Results

We summarize our validation results in Table 1. The model validation system
was tested using 18 images (RADIUS data set j1-j8 and RADIUS data set k1-k10), at
full and one-half resolution. As a global result, all the objects described in the model
were present in the set of 18 images. The system software is written in Common Lisp
and runs under the RCDE on a Sun SPARCstation 10.

Table 1: Summary of Verification Results

Stage — Strong Matches After Shadow verification
2 Resolution (%) time (%) time
1/2 47% 80.1%
(~0.9 m/pixel) (t1=7 min.) (t2 = t1+5.5s)
1 58.8% (t1=17.5 min.) 75.9%
(~0.45 m/pixel) (12=t1+65)

The percentages are the averages after processing 18 images and show the per-
centage of validated buildings after the two stages of the algorithm: after the match-
ing process (strong matches) and after the shadow verification process. Percentage of
verified buildings for images j1-j8 and k1-k10. t1 is the time taken for edge detection
and matching. t2 is t1 plus the time taken for the shadow verification process. This
shows that t2-t1 is negligeable compared to t1+t2. Objects not visible in the image are
easily determined and thus are not included in the figures. The images did not all
have the same resolution, but we have grouped them into two groups of “approximate”
resolution for convenience in the presentation of the results: 45 cm/pixel (full resolu-
tion) and, 90 cm/pixel (one-half resolution). The size of the images at full resolution is
typically 1300x1000 pixels. '

Acaumatater Arrey
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Figure 2.8 The accumulator array.
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Note that at high resolution improved matching accuracy yields more strong
matches as can be expected. Shadow verification however suffers as inaccuracies in
the model are magnified. In some instances, the modeled height of an object is incor-
rect and thus, the projected shadows we derive fall long or short their actual locations
in the image. This and other factors (the accuracy in registration, the quality and vis-
ibility of shadows, and the model itself) should be considered when evaluating the
performance of the system.

Although our results are very encouraging, there is certainly room for improve-
ment, both at the registration level and at the verification level. Inaccuracies in the
model should be tolerated to a good extent at this stage, for example. These improve-
ments will also help processing images that lack shadow definition or shadows alto-

gether.

As far as processing time is concerned, we observe from the table that the time
taken for shadow verification is negligeable compared to t1, which divides equally be-
tween the line extraction and the segment matching. We have to note that the times
indicated here are given for comparison purposes only, no serious effort was made to
optimize our implementation.

A typical result of our validation system is shown in Figure 2.9. The model ob-
jects are shown superimposed on the scene (J2 in this example). The objects shown in
dashed lines are not visible in the image. The objects shown in bold lines were not val-
idated. All others were validated. Note that non-validated objects correspond to dark
buildings with poorly visible shadows.

Figure 2.9 Validation result for image J2.
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2.8 Conclusions and Future Work

We have presented a model-based system capable of verifying the presence in an
image of objects described in a 3-D site model. This task, called model validation, is
the first step towards the construction of a full change detection system.

We perform the model validation in three steps: first, register the image on the
model, then perform segment matching and build hypothesis to represent the possible
presence of each model object in the image, and finally, verify those hypothesis using
the shadow information extracted from the image.

Although the results are very encouraging, there is certainly room for improve-
ment, both at the registration level and at the verification level. This is part of our
future plans. Inaccuracies in the model should be tolerated to a good extent at this
stage, for example. These improvements will help processing images that lack shadow
definition or shadows altogether.

Our plans for next year include additional testing of these techniques using im-
agery and models from different sites. We expect that site models for the modelboard
2 data set, Martin Marietta’s Denver, Colorado site and Fort Hood, Texas’ site be
available. We also plan to incorporate the fast block interpolation projection (FBIP)
method that allows testing with a variety of camera models, into the system. This will
facilitate testing in operational environments where we expect to port our systems.
The systems will be enhanced to include an appropriate user interface to allow other
users to perform testing.

We also expect to be able to integrate the validation system and the model con-
struction system to allow updating of the site model at the level of building structures.

Two other activities are planed for the coming year: limited testing of the vali-
dation system to verify the presence in the images of other objects, aircraft in partic-
ular, using simplified 3-D aircraft models derived by hand from a few views. The
second activity involves the use of LOOM, a high-level reasoning tool developed by the
University of Southern California (USC) Information Sciences Institute (ISI) under
separate funding, to model context and events to be detected and described from a col-
lection of images. The scenarios planned involve the deployment of mobile objects for
specific purposes.
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3 Detection of Buildings Using
Perceptual Grouping and Shadows

The goal of this work is to detect and describe buildings from monocular views
of arbitrary aerial scenes. This is a difficult but important task for many applications
such as photo-interpretation, cartography and surveillance. Building detection is dif-
ficult for several reasons. The contrast between the roof of a building and surrounding
structures, such as curbs, parking lots, and walkways, can be low. The contrast be-
tween the roofs of various wings, typically made of the same material, may be even
lower. Low contrast alone is likely to cause low-level segmentation to be fragmented.
In addition, small structures on the roof, and objects such as cars and trees adjacent
to the building, will cause further fragmentation and give rise to “noise” boundaries.
Roofs may also have markings on them caused by dirt or variations in material. Shad-
ows and other surface markings on the roof cause similar problems.

Figure 3.1 A building from F‘t. Hood, Texas

There are other characteristics of these images which may cause problems.
Roofs have raised borders which sometimes cast shadows on the roof. This results in
multiple close parallel edges along the roof boundaries. These edges often appear bro-
ken and disjointed. At roof corners and junctions of two roofs, multiple lines meet
leading to a number of corners, thus making it difficult to choose a corner for tracking.
A roof casts a shadow along its side and often there are objects on the ground such as
grass, trees, trucks, pavement, etc., which lead to changes in the contrast along the
roof sides.

Consider the building in Figure 3.1 (from a scene of Ft. Hood, Texas.) For sim-
plicity, an overhead view is used as a running example. The building is easy for hu-
mans to see and describe, but it is difficult for computer vision systems. Figure 3.2
shows the line segments extracted from the image using LINEAR, our linear feature
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extraction software [2, 19]. We are still able to see the roof structures of the buildings
easily, but the complexity of the task now becomes more apparent. The building
boundary is fragmented and there are gaps and missing segments. There are also
many extraneous boundaries caused by other structures in the scene.

Figure 3.2 Line segments extracted from the image

There have been many previous attempts to solve this problem
[9,10,11,12,15,18,21]. Building detection requires robust segmentation techniques
and methods to infer the 3-D structure. These methods rely on edges or regions ex-
tracted from the image. Simple edge-based methods attempt to collect linked edge
curves into the desired object boundaries, and succeed only for relatively simple
scenes. Some edge-based methods have used some form of a contour tracing tech-
nique, see for example [9,10,21]. These are essentially local techniques that must
make a decision of which path to trace at each local junction. Of course, all paths could
be traced using backtracking, but the search space may become prohibitively large.
Region based techniques construct closed curves that often do not correspond to the
objects of interest. '

Model based techniques can deal with fragmentation but require a-priori shape
models. For example, it is not sufficient to say that the building is a rectangular par-
allelepiped; you must also supply the relative dimensions of the sides. In summary,
these systems have shown interesting performance but on limited examples. None of
these systems can generate a description of the buildings at the level of shape descrip-
tions of the different wings.

We have proposed, instead, to use a perceptual grouping approach. Cultural fea-
tures, such as buildings, represent structures that are not random but have specific
geometric properties. In this we restrict the shapes of buildings to be a single or a
composition of rectangular parallelepipeds (thus allowing L, T and I shapes for exam-

ple).
Previous systems have assumed that the viewpoint is more or less overhead. The
system described here uses the viewpoint angles (swing and tilt) needed to deal with

images acquired from an oblique viewpoint. The geometric constraints relevant to
shape take into consideration, as a function of the viewpoint angles, the expected
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skewness of the rectangular surfaces that most buildings are expected to have. This
property is used to organize the detected line segments into roof hypotheses. While
the visible building sides (walls) can be hypothesized similarly, they are not handled
now. This approach leads to fewer hypotheses than would be generated by a complete
contour tracing scheme.

The approach combines several of the techniques from previous work. The per-
ceptual grouping approach comes from the work described in [18], however, a very dif-
ferent hypotheses selection technique is used. Mohan and Nevatia, in fact, used
perceptual grouping for stereo analysis --- here it is applyed to monocular analysis.
The shadow analysis method is an extension of the approach first described in [ 9,10].

The diagram in Figure 3.3 shows the main components in the system. The sys-
tem uses the line segments approximating the intensity boundaries to compute linear
structures and relevant junctions among them. A hierarchy of features including par-
allel relationships and portions of skewed rectangles or parallelograms leads to the
formation of building hypotheses. These consist of instances of rectangular shapes
that potentially correspond to building roofs and parts of building roofs (see section
3.1). Next, promising parallelograms are selected and verified to correspond to roofs
of building structures. Shadow information, if available, is used to help form, select
and verify hypotheses. It also, as a function of the sun angles, provides estimates of
the height of the structures, leading to a 3-D description of the scene.

Image

[ Linear Feature Extraction |

[ Parallelogram Selection ]4—-——1

] Parallelograx! Verification |-¢————

3-D BuildingvDescription
Figure 3.3 Block Diagram of the System

The philosophy in the design of this system has been to make only those deci-
sions that can be made confidently at each level. Thus, we choose to generate as many
hypotheses as seem feasible at the first level. The selection process, too, is conserva-
tive and favors keeping hypotheses that may be viable. The verification process has
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the most global information and can make stronger decisions. Even here, if our sys-
tem is to be embedded in a larger system, some of the decisions would be deferred to
that system where more context is available for decision making.

The technique described in this report, we believe, significantly extends the
range of scenes that can be analyzed, though many problems remain. We show several
examples taken from the images provided by the RADIUS program to demonstrate
the effectiveness of our technique. Also in the context of the RADIUS program we
have transferred our software to two industrial sites and continue to support their
testing tasks. The results, in general, have been very good, and the experience of tech-
nology transfer, albeit difficult , has been a successful one.

3.1 Generation of Hypotheses

The process of hypotheses formation is similar to the one described in [18] with
the appropriate extensions to oblique views and the use of strong shadow cues (if
available). In this process we construct a feature hierarchy which encodes the struc-
tural relationships specific to oblique views of rectangular shapes, presumably corre-
sponding to the visible roof surfaces: Lines, skewed parallels, skewed U-contours, and
skewed rectangles or parallelograms. The degree of skewness is computed as a func-
tion of the swing and tilt angles denoting the viewpoint. Figure 3.4 shows the angles
involved. We expect that images from aerial scenes have a camera model associated
with them from which these angles can be derived.

Next, we describe the hierarchy of features in the system:

Tilt angle

Principal li )
rincipal line Optical
axis
Vertical
direction

Figure 3.4 3-D Viewpoint angles

L Y ,Swing angle
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Lines and junctions

A group of close parallel lines represent a linear structure at a higher granular-
ity level than the edges (see the common boundary between the building wings in Fig-
ure 3.2.) The resulting lines have a length and an orientation derived from the
contributing elements. Figure 8.5 shows the lines obtained from grouping the seg-
ments in Figure 3.2. These lines are used to detect L-junctions and T-junctions also
shown in Figure 3.5. For oblique views, we also look for evidence of vertical edges in
the immediate neighborhood of the L and T-junctions, thus allowing us to detect po-
tential OTV’s. Vertical edges are detected by looking for line segments that are paral-
lel to the image’s principal line.

Figure 3.5 Linear structures and junctions

Parallels and skewed U-structures

Structures in urban scenes like buildings, roads and parking lots are often orga-
nized in regular grid-like patterns. These structures are composed of parallel sides.
As a consequence, for each significant line-structure detected in the scene, there is not
one, but many lines parallel to it. For each line, we find lines that are parallel and
satisfy a number of reasonable constraints. Note that the formation of a parallel
structure also aids in the formation of new lines, as they suggest extension and con-
traction of the parallels to achieve full skewed overlap.

When the two lines in a parallel structure have their ends aligned as a function
of the viewing angles, they strongly suggest the presence of a line with which the par-
allel structure would form a skewed U-structure. Even if the third line does not exist
in the set of lines, we hypothesize it and generate the U-structure.

Skewed rectangles or parallelograms

Skewed rectangle or parallelogram structures are generated from the U-struc-
tures. The parallelograms formed in our example are shown in Figure 3.6. In practical
applications this number can be reduced by restricting the formation of parallelo-
grams on the basis of size ---as a function of image resolution, for example. Parallelo-
grams are also generated from matching junctions along the direction of illumination
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(see strong junctions in section 3.3.) We hypothesize the missing portions of a paral-
lelogram having a corner with a matching shadow corner or evidence of an OTV.

Figure 3.6 Parallelogram hypotheses generated

3.2 Selection of Hypotheses

After the formation of all reasonable parallelograms, a selection process is ap-
plied to choose parallelograms having strong evidence of support and having mini-
mum conflict among them. Earlier versions of our system used a Constraint
Satisfaction Network (CSN) [18]. In the current system, we use a criteria-based meth-
od which seems to give much more predictable results. Next we summarize our cur-
rent method.

Our new system uses two kinds of criteria: local selection criteria and global se-
lection criteria. Local selection criteria determine whether or not a parallelogram is
“good” based on the local supporting evidence. Only good parallelograms are retained
for global selection. It is possible that some of the good parallelograms retained after
the local selection are mutually contained, duplicated or overlapped with some other
good parallelograms. Global selection criteria select the best consistent parallelo-
grams from good parallelograms.

We apply local selection criteria and global selection criteria differently. Local
selection criteria (also called evaluation criteria) work together to evaluate the good-
ness of a parallelogram, while global selection criteria work separately. Each global
selection criterion acts like a filter. The set of retained parallelograms pass through
all filters and the set of parallelograms coming out from the last filter will be the set
of parallelograms selected by the selection process.

The local selection criteria are used to remove parallelograms formed using
weak evidence. For each parallelogram the evaluation criteria compute a goodness
value. If this value exceeds a given threshold, the parallelogram is selected, otherwise
the parallelogram is removed.

Every evaluation criterion is weighted according to its importance. The goodness
of a parallelogram is then measured by the sum of the weighted values calculated by
the evaluation criteria. The problem of measuring the goodness of a parallelogram
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now becomes a problem of finding and formulating good evaluation criteria, and as-
signing appropriate weights.

Whether a parallelogram is good or not depends on the evidence of support. We
distinguish between positive evidence, shown in Figure 3.7, and negative evidence,
shown in Figure 3.8, of support for a parallelogram. The positive evidence of support
includes the presence of edges, corners, parallels, OTV’s and shadows.

%
Figure 3.7 Positive evidence

The negative evidence of support includes the presence of lines crossing any side
of a parallelogram, existence of L-junctions or T-junctions in any side of a parallelo-
gram, existence of overlapping gaps on opposite sides of a parallelogram, and dis-
placement between four sides of a parallelogram and its corresponding edge support.
Negative evidence is as important as positive evidence because it helps us to remove
those parallelograms which are less likely to be part of buildings.

Go through Go through
L-junction T-junction
Overlapping 7 > — ..\:/

gaps ‘4 _\______-—-————»

T dN ]t?is lacementrt
"I Hypgthesized] ol €dge suppo
Line crossing pgrgﬁel}ozgram
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Figure 3.8 Negative evidence

Each kind of evidence of support is formulated into an evaluation criterion.
There is no formal definition of goodness of a parallelogram, thus our evaluation cri-
teria formulated from evidence of support are based on analysis of likely and unlikely
events. For example, four junctions are very unlikely to fall on the four corners of a
parallelogram accidentally. So the existence of four corners on a parallelogram strong-
ly suggests that the parallelogram is good. Also, from the Gestalt Laws of Perceptual
Grouping, the Law of Closure suggests that the existence of L-junctions or T-junctions
on a side of a parallelogram will make a closure on part of the parallelogram, meaning
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that the hypothesized parallelogram is not good. Some evidence of support is not al-
ways available, such as the shadow evidence and the OTV corner evidence, but they
are important because it is very unlikely that some shadow features will appear
around the hypothesized parallelogram, by chance, and the probability for three lines
to form an OTV corner, by chance, is very small. We can emphasize the importance of
an evaluation criterion by assigning a higher weight to it.

Positive weights are assigned to those evaluation criteria formulated from posi-
tive evidence of support, while negative weights are assigned to those evaluation cri-
teria formulated from negative evidence of support. A weight should be assigned to
each evaluation criterion according to the probability of existence of buildings under
the condition of presence of the evidence of support from which the evaluation crite-
rion is derived. However, we do not have the probabilistic analysis of goodness of a
parallelogram, but the problem of optimal weights assignment for a given set of ex-
amples could be formulated into a search problem.

Good parallelograms surviving local selection may compete with each other. For
example, some parallelograms could share the same edges or corners support and
some parallelograms might overlap with each other. The goal of global selection crite-
ria is to select a minimum set of parallelograms which best describe the rectangular
composition of the scene.

Global selection criteria examine overlapping parallelograms and choose one if
appropriate. The selection is based on relative properties of each parallelogram, the
amount and kind of overlap, and whether they share support or not. Note that a par-
allelogram fully contained in another is not necessarily removed. If a parallelogram
does not overlap with any other parallelogram, then it is not in competition, and it
remains. There are four global selection criteria in our system. They are the criterion
for duplicated parallelograms, the criterion for mutually contained parallelograms,
the criterion for fully contained parallelograms, and the criterion for overlapping par-
allelograms.

It is very easy to extend and improve the criteria-based selection process. If a
new kind of evidence of support is found to be crucial for the goodness of a parallelo-
gram, we can formulate an evaluation criterion from the evidence of support and
merge the evaluation criterion to the original set of evaluation criteria by assigning
appropriate weight to it and adding the weighted value to the goodness value. On the
other hand, if a new global relationship between parallelograms is found to be impor-
tant, we can also implement a new filter to enforce the relationship and add the new
filter in appropriate position to the original pipeline of filters.

The parallelograms selected in our Ft. Hood example, after both the local and
global selection criteria have been applied, are shown in Figure 3.9.

3.3 Verification of Hypotheses

The purpose of verification is to validate the selected hypotheses to correspond
to buildings. Our validation step segments the objects, generates a description of the
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Figure 3.9 Selected parallelograms

shape of the structures and derives a 3-D model. The use of shadow evidence, dis-
cussed below, uses methods described in [ 9,10 ,11] with the appropriate extensions to
handle oblique views. Oblique views require at least two sun angles (see Figure 3.10),
the direction of illumination and the sun incidence angle. For testing, we have gotten
these angles from image measurements.

~ Direction of illumination

X
" - 3 \I 4
. Incidence |0
.7 . angle LT

Vertical Edge

\ Shadow of
Vertical edge

Figure 3.10 Sun angles & oblique shadow geometry

3.4 Shadow Analysis

Shadow analysis is the establishment of correspondences between shadow cast-
ing elements and shadows cast, and the use of these correspondences to verify and
model 3-D structures. We assume that the ground surface in the immediate neighbor-
hood of the structure is fairly flat and level. The shadow casting elements are given
by the sides and junctions of the selected parallelogram hypotheses. The shadow
boundaries are located among the lines and junctions computed earlier from the im-

age.

There are a number of difficulties that prevent the accurate establishment of
correspondences, however. Building sides are usually surrounded by a variety of ob-
jects, such as loading ramps and docks, grass areas and sidewalks, trees, plants and
shrubs, vehicles, and light and dark areas of various materials. Nearby structures
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may reflect light into the shadowed areas making the objects in it more visible, and
so on. To deal with these problems we have adopted the following definitions, criteria
and geometric constraints to analyze the shadows adjacent to parallelograms (see

Figure 3.11):

Shadow Medium
casting line
line
Strong
Sltirr?eng —Y junction
%ﬁgﬁgﬁ‘ - Medium line

Figure 3.11 Shadow features

Strong Junctions: Matching junctions along the direction of illumination, hav-
ing a consistent shape and a consistent attitude. These junctions constitute the stron-
gest monocular cue to the presence of a 3-D structure. We use knowledge of these
correspondences also to help form and select parallelogram hypotheses.

Strong Lines: Shadow boundaries cast by vertical object edges. We use this ev-
idence also during hypotheses formation and selection.

Medium Lines: The parallelogram sides that are supposed to cast shadows
must have corresponding shadow lines.

Medium Junctions: The junctions formed by strong and medium hnes found
along the direction of the strong lines.

Weak Junctions and Lines: Junctions and breaks in the shadow boundaries
between the strong and weak junctions.

Strong Regions: Dark regions surrounded by strong and medium junctions.
We require that this region be darker than the parallelogram region regardless of
their gray level.

Weak Regions: In the absence of geometric correspondences of junctions and
lines, a dark region adjacent to parallelogram, consistent with the direction of illumi-
nation.
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3.5 Shadow Process

The shadow process consists of four steps:

Extraction of Potential Shadow Evidence

Potential shadow evidence consists of lines, junctions and intensity statistics.
We extract the following:

¢ Lines parallel to shadow boundaries cast by vertical edges. They represent po-
tential shadow lines cast by 3-D structures in the image.

e Lines having their dark side on the side of the illumination source are potential
shadow lines.

e Junctions among the lines above.
e DPixel statistics to compare relative brightness.

The potential shadow lines and junctions extracted from the lines in our Ft.
Hood example are shown solid in Figure 3.12. The underlying edges are shown in

gray.

Figure 3.12 Potential shadow lines and junctions

Search for Shadow Evidence

For each parallelogram we look in a search window (dashed lines in Figure 3.13)
and collect all the potential shadow evidence in it. The search distance is arbitrarily
chosen as a function of the maximum expected building height and the sun incidence
angle. There is the possibility that lines, not relevant to the current parallelogram, be
included. They however, have a reduced effect in the presence of the real evidence.

Medium and weak lines that are parallel to the parallelogram side are favored.
In some cases there may be various sets of lines, all parallel to the building side, but
at various distances from the parallelogram side. This is actually a common occur-
rence since many sidewalks, grass areas, streets, vehicles and so on, will be found to
be arranged or located parallel to building sides. In this case we choose those shadow

Annual Technical Report 27




lines at the distance from the parallelogram side such that the sum of their lengths is
greater, but not exceeding the length of the parallelogram. We determine the width of
the shadow by averaging the distance to the lines selected. The selected evidence is
then considered to surround the shadow region. We compute the mean intensity of
this region and compare it to the parallelogram region.The evidence collected for both
sides is combined to give the evidence for the parallelogram.

4 / Ilumination

(

/ Weak line
4= ‘\ Medium line

Figure 3.13 Windows to search for shadows evidence

Evaluation of Shadow Evidence

We evaluate the shadow evidence and give a confidence value as a weighted sum
of the evidence of strong junctions, medium junctions, strong lines, weak lines, and
strong and weak regions. We designated five levels of confidence. Each level of confi-
dence requires that a minimum amount of the different kinds of evidence be present.
Very high confidence requires that every kind of evidence be detected. Very low evi-
dence is reported when no geometric correspondences can be established but the pres-
ence of a region, adjacent to and darker than the parallelogram region itself, is found.
The parallelograms selected on the basis of shadow evidence are shown in Figure
3.14.

Figure 3.14 Verified parallelograms

Use of Shadow Evidence

The parallelograms verified by shadows are used to generate an image contain-
ing the corresponding regions. The pixel values inside these regions encode the esti-
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mated height (as a function of the estimated shadow width and the sun incidence
angle), thus giving an “elevation map” of the scene. This image can be viewed from an
arbitrary viewpoint. The transform that projects the 3-D scene onto the 2-D screen for
viewing can then be used to collect the pixel values from the input image, and use
them to “paint” or render the various regions in the elevation map. Other 3-D repre-
sentations, such as wire frame models, can also be easily derived from the knowledge
associated with the detected and verified parallelograms. A 3-D rendered arbitrary
view computed from the parallelograms verified in the Ft. Hood example is shown in
Figure 3.15.

Figure 8.15 3-D view from another viewpoint

3.6 Results

The system has been tested on a number of examples provided by the RADIUS
program with good results. A few are shown to demonstrate the performance of the
system and point out some of the sources of problems. As part of the RADIUS pro-
gram, the system has also been ported to run on UNIX workstations and transferred
to two industrial sites and tested on some operational imagery. The results have been
very promising and potentialy useful to the intended users. The speed of processing
is a limitation however. It takes from 2 to 5 minutes to process a 512x512 image con-
taining a few buildings. A 1320x1100 image with about 40 structures takes about one
hour on a Sparc10/30. USC has a group currently working on parallel implementation
of vision algorithms such as our system.

In the following figures, (a) shows an image, (b) the line segments extracted from
it, (c) the linear structures and junctions computed, (d) the parallelograms hypothe-
sized, (e) the selected hypotheses, and (f) the hypotheses verified by shadows. In par-
ticular, note figure (e), the excellent performance of the new selection technique. In
the absence of shadow information, the selected parallelograms can be matched by
our system if stereo views are available, thus, providing verification and a 3-D model.

Figure 3.16 shows a set of four buildings and part of another. The difficulty is
with the building with the patterned arrangement of small objects on the roof. The
shadows cast by these reach one side of the building causing it to be fragmented. The
shadow occluding the top left corner of the building and the poor boundary definition
on the top right are also a source of difficulty. Accurate junction information can not
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be established and the systems must hypothesize a portion of the building. The strong
shadow cues, however, help form parallelogram hypotheses for most of the building.

i

d 3 e Df

Figure 3.16 Modelboard - Scene 1

Figure 3.17 shows an oblique view of two dark buildings. The boundaries be-
tween dark buildings and shadows usually have low contrast and are difficult to de-
tect.

Figure 3.17 Modelboard - Scene 2 (oblique)

Figure 3.18 shows a complex building with numerous rectangular components
on the roof. We are able to exploit the presence of strong shadow evidence here. It al-
lows the system to form a hypothesis for the entire building in spite of the broken and
fragmented boundaries. Note that the selection mechanism is able to select most of
the rectangular components on the roof as well. Figure 3.18g shows a 3-D rendered
view of the building, from an arbitrary viewpoint.

Figure 3.19 shows another oblique view including some simple buildings. Note
that the considerable fragmentation of the roof boundaries due to the features, such
as windows, on the visible sides is tolerated well and reconstructed properly by the
colinearization grouping.
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Figure 3.18 Modelboard - Scene 3
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Figure 3.19 Modelboard - Scene 4 (oblique)

Figure 3.20 shows a building in Ft. Hood where some of the details of one of its
sides is visible, apparently doors. These and the vehicles parked on the other side re-
sult in highly fragmented boundaries. The parallelograms verified by shadows in-
clude one that is formed from various aligned parked trailers which collectively cast
a shadow. The small parallelogram on the bottom has a strong shadow junction cor-
responding to an actual narrow shadow cast by a vehicle. The lower wing of the build-
ing has a strong line and a corresponding medium junction. The rest of the shadow is
diffused and is visible as a “dark” region adjacent to the building wings with no defi-
nite boundaries.
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Figure 3.20 Fort Hood - Scene 2

In Figure 3.21 the I-shaped building has no strong evidence of shadows. The par-
allelograms are weakly validated on the basis of a strong region (shadow) which up to
a given maximum search distance remains “strongly” dark.

Figure 3.21 Fort Hood - Scene 3

Figure 3.22 shows a group of small buildings arranged in a parallel fashion, and
surrounded by other parallel structures. In spite the large number of hypotheses the
system is able to select the relevant ones.

<2y
S

Figure 3.22 Fort Hood - Scene 4

32 Annual Technical Report




Finally, Figure 8.23a shows an image from the RADIUS modelboard set contain-
ing a large number of structures (about 40). The system forms 1,724 hypotheses and
selects 177. Some rectangles are selected but not verified. These correspond to dark
low buildings with a small shadow that becomes merged with the buildings roof, and
thus, becomes harder to verify. The system verifies 112 hypotheses on the basis of
shadow evidence. Those verified on weak evidence (no object-to-shadow correspon-
dences were possible) are excluded from the set of 75 shown in Figure 3.23b. We have
not implemented a step that combines these rectangles into structures yet. The rect-
angles verified, however, represent a large majority of the components of the 40 or so
structures in the image. Portions of the dark building on the lower right part of the
image were only weakly hypothesized, and thus, not selected for verification.

Figure 3.23 Modelboard image and verified buildings

3.7 Conclusion and Future Work

We plan to continue to extend our current system to detect the visible sides of
buildings from oblique views of the scenes. This requires additional work in the use
of the OTVs that can be located. This will allow us to rely less on the shadow evidence
as it becomes more difficult to establish object-to-shadow correspondences. With ob-
lique views, the shadows are likely to be occluded by the objects themselves or fall
onto regions that belong to nearby structures. Currently, we assume that the detected
and verified structures lay on the ground. Some structures, however, are located on
top of other structures. That level of refinement of the description requires an addi-
tional step in our system and is one of the subjects of our current and future work.
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